Encodes an auxin efflux carrier that is similar to bacterial membrane transporters. Root-specific role in the transport of auxin. Acts downstream of CTR1 and ethylene biosynthesis, in the same pathway as EIN2 and AUX1, and independent from EIN3 and EIN5/AIN1 pathway. In the root, the protein localizes apically in epidermal and lateral root cap cells and predominantly basally in cortical cells. Functions may be regulated by phosphorylation status. EIR1 expression is induced by brassinolide treatment in the brassinosteroid-insensitive br1 mutant. Gravistimulation resulted in asymmetric PIN2 distribution, with more protein degraded at the upper side of the gravistimulated root. Protein turnover is affected by the proteasome and by endosomal cycling. Plasma membrane-localized PIN proteins mediate a saturable efflux of auxin. PINs mediate auxin efflux from mammalian and yeast cells without needing additional plant-specific factors. The action of PINs in auxin efflux is distinct from PGPs, rate-limiting, specific to auxins and sensitive to auxin transport inhibitors. Membrane sterol composition is essential for the acquisition of PIN2 polarity.
Computational Description
ETHYLENE INSENSITIVE ROOT 1 (EIR1); CONTAINS InterPro DOMAIN/s: Auxin efflux carrier, subgroup (InterPro:IPR014024), Auxin efflux carrier (InterPro:IPR004776); BEST Arabidopsis thaliana protein match is: Auxin efflux carrier family protein (TAIR:AT2G01420.2); Has 30201 Blast hits to 17322 proteins in 780 species: Archae - 12; Bacteria - 1396; Metazoa - 17338; Fungi - 3422; Plants - 5037; Viruses - 0; Other Eukaryotes - 2996 (source: NCBI BLink).